Image Processing 1 (IP1) Bildverarbeitung 1

Lecture 12 - Grouping and Searching

Winter Semester 2015/16
Slides: Prof. Bernd Neumann
Slightly revised by: Dr. Benjamin Seppke \& Prof. Siegfried Stiehl

Grouping

To make sense of image elements, they first have to be grouped into larger structures.
Example: Grouping noisy edge elements into a straight edge

Essential problem:

Obtaining globally valid results by local decisions

Important methods:

- Fitting
- Clustering
- Hough Transform
- Relaxation
- locally compatible
- globally incompatible

Cognitive Grouping

The human cognitive system shows remarkable grouping capabilities

\bullet		\bullet	-		-	-			-	-		$\stackrel{\bullet}{\bullet}$

grouping into rows or columns according to a distance criterion

grouping into virtual edges

- - -

.. . grouping into virtual
... motion

It is worthwhile wondering which cognitive grouping rules should also be followed by machine vision

Fitting Straight Lines

Why do we want to discover straight edges or lines in images?

- Straight edges occur abundantly in the civilized world.
- Approximately straight edges are also important to model many natural phenomena, e.g. stems of plants, horizon at a distance.
- Straightness in scenes gives rise to straighness in images.
- Straightness discovery is an example of constancy detection which is at the heart of grouping (and maybe even interpretation).

We will treat several methods for fitting straight lines:

- Iterative refinement
- Mean-square minimization
- Eigenvector analysis
- Hough transform

Straight Line Fitting by Iterative Refinement

Example: Fitting straight segments to a given object motion trajectory

Algorithm:

1. First straight line is $P_{1} P_{N}$
2. Is there a straight line segment $P_{i} P_{k}$ with an intermediate point $P_{j}(i<j<k)$ whose distance from $P_{i} P_{k}$ is more than d ? If no, then terminate.
3. Segment $P_{i} P_{k}$ into $P_{i} P_{j}$ and $P_{j} P_{k}$ and go to (2).
Advantage: simple and fast

Disadvantages:

- strong effect of outliers
- not always optimal

$$
\begin{aligned}
& 0000000000000000 \\
& 0000000000000000
\end{aligned}
$$

Straight Line Fitting by Eigenvector Analysis I

Given: $\quad\left(x_{i} y_{j}\right) \quad i=1 \ldots \mathrm{~N}$
Wanted: Coefficients c_{0}, c_{1} for straight line

$$
y=c_{0}+c_{1} x \text { which minimizes } \sum d_{i}^{2}
$$

The optimal straight line passes through the mean of the given points. Why?
Let ($x^{\prime} y^{\prime}$) be a coordinate system with the x^{\prime} axis parallel to the optimal straight line.

- optimal straight line $\quad x^{\prime}=x_{0}{ }^{\prime}$
- error

$$
\begin{aligned}
& \sum d_{i}{ }^{2}=\Sigma\left(x_{i}{ }^{\prime}-x_{0}{ }^{\prime}\right)^{2} \\
& \delta / \delta x_{0}\left\{\Sigma\left(x_{i}{ }^{\prime}-x_{0}{ }^{\prime}\right)^{2}\right\}=-2 \Sigma\left(x_{i}{ }^{\prime}-x_{0}{ }^{\prime}\right)=0 \\
& x_{0}{ }^{\prime}=1 / N \Sigma x_{i}{ }^{\prime}
\end{aligned}
$$

A new coordinate system may be chosen with the origin at the mean of the given points:

$$
x_{j}^{\prime}=x_{j}-\frac{1}{N} \sum x_{i} \quad, \quad y_{j}^{\prime}-=y_{j}-\frac{1}{N} \sum y_{i}
$$

Optimal straight line passes through origin, only direction is unknown.

Straight Line Fitting by Eigenvector Analysis II

After coordinate transformation the new problem is:
Given: points $\vec{v}_{i}=\left(x_{i} y_{i}\right)^{T}$ with $\sum_{i=1}^{N} \vec{v}_{i}=0$
Wanted: direction vector \vec{r} which minimizes $\sum d_{i}^{2}$
Minimize

$$
d^{2}=\sum_{i=1}^{N}\left(d_{i}\right)^{2}=\sum_{i=1}^{N}\left(\vec{r}^{T} \vec{v}_{i}\right)^{2}=\sum_{i=1}^{N}\left(\vec{r}^{T} \vec{v}_{i}\right)\left(\vec{v}_{i}^{T} \vec{r}\right)=\vec{r}^{T} \underset{\leftarrow}{S_{\sim}} \underset{\text { scatter matrix }}{ }
$$

Minimization with Lagrange multiplier λ :

$$
\vec{r}^{T} S \vec{r}+\lambda \vec{r}^{T} \vec{r} \rightarrow \min \quad \text { subject to } \vec{r}^{T} \vec{r}=1
$$

Minimizing \underline{r} is eigenvector of S, minimum is eigenvalue of S.
For a 2D scatter matrix there exist 2 orthogonal eigenvectors:

- $\underline{r}_{\text {min }}$ orthogonal to optimal straight line
- $\underline{r}_{\text {max }}$ parallel to optimal straight line

Straight Line Fitting by Eigenvector Analysis III

Computational procedure:

1. Determine mean of given points: $\vec{\mu}=\binom{\mu_{x}}{\mu_{y}} \quad \mu_{x}=\frac{1}{N} \sum x_{i}, \quad \mu_{y}=\frac{1}{N} \sum y_{i}$
2. Determine scatter matrix:

$$
S=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)=\left(\begin{array}{cc}
\sum\left(x_{i}-\mu_{x}\right)^{2} & \sum\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right) \\
\sum\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right) & \sum\left(y_{i}-\mu_{y}\right)^{2}
\end{array}\right)
$$

3. Determine maximal Eigenvalue

$$
\lambda_{\max }=\max \left\{\lambda_{1}, \lambda_{2}\right\}
$$

$$
\lambda_{1,2}=\frac{S_{11}+S_{22}}{2} \pm \sqrt{\left(\frac{S_{11}+S_{22}}{2}\right)^{2}-|S|}
$$

4. Determine direction of eigenvector corresponding to $\lambda_{\text {max }}$

$$
S_{11} r_{x}+S_{12} r_{y}=\lambda_{\max } r_{x} \quad \text { by definition of eigenvector } \rightarrow r_{y} / r_{x}
$$

5. Determine optimal straight line:

$$
\left(y-\mu_{y}\right)=\left(x-\mu_{x}\right) \frac{r_{y}}{r_{x}}=\left(x-\mu_{x}\right) \frac{\left(\lambda_{\max }-S_{11}\right)}{S_{12}}
$$

Example for Straight Line Fitting by Eigenvector Analysis

What is the best straight-line approximation of the contour?

Given points: $\{(-50)(-30)(-1-1)(10)(32)(53)(72)(92)\}$

Center of gravity:

$$
m_{x}=2 m_{y}=1
$$

Scatter matrix:
Eigenvalues:
$S_{11}=168, S_{12}=S_{21}=38, S_{22}=14$

$$
\lambda_{1}=176.87, \lambda_{2}=5.13
$$

Direction of straight line: $\quad r_{y} / r_{x}=0.23$
Straight line equation: $\quad y=0.23 x+0.54$

Grouping by Search

What is the "best path" which could represent a boundary in a given field of edgels?

The problem can be formulated as a search problem:

- What is the best path from a starting point to an end point, given a cost function $c\left(x_{1}, x_{2}, \ldots\right.$, x_{N} ?
- The variables $x_{I} \ldots x_{N}$ are decision variables whose values determine the path.

Unfortunately, the total $\operatorname{cost} c\left(x_{1}, \ldots, x_{N}\right)$ is in general not minimized by local minimal cost decisions min $c\left(x_{i}\right)$, e.g. following the path of maximal edgel strength.

Hence search for a global optimum is necessary, e.g.

- Dynamic Programming
- A* search
- Hill climbing

Dynamic Programming I

Dynamic Programming is an optimization method which can be applied if the global cost $c\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ obeys the principle of optimality:

If $a_{1}, a_{2}, \ldots, a_{N}$ minimize $c\left(x_{1}, x_{2}, \ldots, x_{N}\right)$,
then $a_{i+1}, a_{i+1}, \ldots, a_{k-1}$ minimize $c\left(a_{1} \ldots a_{i j}, x_{i+1}, x_{i+2}, \ldots, x_{k-1}, a_{k \ldots} a_{N}\right)$
Hence, for a globally optimal path every subpath has to be optimal.
Example: In street traffic, an optimal path from A to B usually implies that all subpaths from A ' to B^{\prime} between A and B are also optimal.

- Dynamic Programming avoids cost computations for all value assignments for $x_{1}, x_{2}, \ldots, x_{N}$.
- If each $x_{i} i=1 \ldots N$, has K possible values, only $N \times K^{2}$ cost computations are required instead of K^{N}.

Dynamic Programming II

Suppose $c\left(x_{1}, x_{2}, \ldots, x_{N}\right)=c\left(x_{1}, x_{2}\right)+c\left(x_{2}, x_{3}\right)+\ldots+c\left(x_{N-1}, x_{N}\right)$, then the optimality principle holds.

Dynamic Programming:

Step 1: Minimize	$c\left(x_{1}, x_{2}\right)$ over x_{1}	\rightarrow	$f_{1}\left(x_{2}\right)$
Step 2: Minimize	$f_{1}\left(x_{2}\right)+c\left(x_{2}, x_{3}\right)$ over x_{2}	\rightarrow	$f_{2}\left(x_{3}\right)$
Step 3: Minimize	$f_{2}\left(x_{3}\right)+c\left(x_{3}, x_{4}\right)$ over x_{3}	\rightarrow	$f_{3}\left(x_{4}\right)$
\vdots			
Step N: Minimize	$f_{N-1}\left(x_{N}\right)+c\left(x_{N-1}, x_{N}\right)$ over x_{N}	\rightarrow	$f_{N}=\min c\left(x_{1}, x_{2}, \ldots, x_{N}\right)$

Example of a cost function for boundary search:
"Punish accumulated curvature and reward accumulated edge strengths"

$$
c\left(x_{1}, \ldots, x_{N}\right)=\sum_{k=1 \ldots N}\left(1-s\left(x_{k}\right)\right)+\alpha \sum_{k=1 \ldots N-1} q\left(x_{k}, x_{k+1}\right) \quad \begin{array}{ll}
s\left(x_{k}\right) & \text { edge strength } \\
q\left(x_{k}, x_{k+1}\right) & \text { curvature }
\end{array}
$$

Dynamic Programming Illustration

Finding the shortest path in a graph using optimal substructures:

- a straight line indicates a single edge
- a wavy line indicates a shortest path between the two vertices it connects (other nodes on these paths are not shown)
- the bold line is the overall shortest path from start to goal
\rightarrow leads to solving the optimization problem backwards

Dynamic Programming III

Example: Find optimal path from left to right

optimal path!

- Find best paths from A, B, C to D, E, F, record optimal costs at D, E, F
- Find best paths from D, E, F to G, H, I, record optimal costs at G, H, I etc.
- Trace back optimal path from right to left

Intelligent Search with the A* Algorithm

Example:

Find the best connection in local traffic

- each node is a transfer location
- each transfer costs some time
- each edge represents one or more traffic lines
- each traffic line takes a certain time of travel

1. Search Step

- Determine alternative routes to the next branching points
- Determine costs for alternative routes to the next branching points
- Estimate remaining costs
- Determine estimated total costs

2. Search Step

- Follow path with least estimated total costs
- Determine alternative routes to the next branching points
- Determine costs for alternative routes to the next branching points
- Estimate remaining costs
- Determine estimated total costs

3. Search Step

Path	Estimated Costs
Path 1	$15+20=35$
Path 4	$6+22+12=40$
Path 5	$6+26+11=43$
Path 6	38
Path 7	$14+6+19=39$

Carry out the same steps as in Search Step 2, here for Path 3

4. Search Step

Path	Estimated Costs
Path 4	$6+22+12=40$
Path 5	$6+26+11=43$
Path 6	38
Path 7	$14+6+19=39$
Path 8	$15+21=36$

Carry out the same steps as in Search Step 3, here for Path 1
Path 8 is the shortest path.

