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Grouping

To make sense of image elements,
they first have to be grouped into larger structures.

Example: Grouping noisy edge elements into a straight edge

AN -

Essential problem:
Obtaining globally valid results by local decisions

<]
Important methods: <§
<

* Fitting

* Clustering =

* Hough Transform

e Relaxation - locally compatible

- globally incompatible
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Cognitive Grouping

The human cognitive system shows remarkable grouping capabilities

I..........I . -
(e oo oooeeoes grouping into rows or
[ oo oeoecoes columns according to a
EEXEXEXEEE] distance criterion
I..........I
” grouping into
virtual edges

o . It is worthwhile wondering which
e grouping into virtual cognitive grouping rules should also
«++ motion be followed by machine vision
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Fitting Straight Lines

Why do we want to discover straight edges or lines in images?

— Straight edges occur abundantly in the /

civilized world. N in SPEED
: LIMIT

— Approximately straight edges are also important e
to model many natural phenomena, e.g. stems
of plants, horizon at a distance.

— Straightness in scenes gives rise to straighness
in images.

— Straightness discovery is an example of
constancy detection which is at the heart of
grouping (and maybe even interpretation).

We will treat several methods for fitting straight lines:
— lterative refinement
— Mean-square minimization
— Eigenvector analysis
— Hough transform
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Straight Line Fitting by
Iterative Refinement

Example: Fittingstraight segmentsto a given object motion trajectory

Algorithm:
1. First straight line is P; Py

2. lIsthere a straight line segment PP, with an intermediate point P; (i <j <k)
whose distance from PP, is more than d? If no, then terminate.

3. Segment PP into P,P; and PP, and go to (2).

Advantage: simple and fast
. _ 060000 000000060TD
Disadvantages: - strong effect of outliers
- notalwaysoptimal c’O00()O()()O()()()OO()()TJ
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Straight Line Fitting by
Eigenvector Analysis |

Given: (x;y) i=1..N

Wanted: Coefficients ¢y, c; for straight line

v =c¢p + ¢;x which minimizes X' d?

The optimal straightline passes through the mean of the given points. Why?

Let (x'y’) be a coordinate system with the x” axis parallel to the optimal straight line.
e optimalstraight line x'=xy

* error 2d? =2 (x;"-x))?
e condition for optimum 0/0x9 {2 (x;-xy )} =-22(x;"-x)7) =0
xg = 1/NXx;’

A new coordinate system may be chosen with the origin at the mean of the
given points:

: 1 , 1
Xj ='xj_ﬁzxi ) yj_=yj_NEyi

Optimal straight line passes through origin, only direction is unknown.




IP1 — Lecture 12: Grouping and Searching

Straight Line Fitting by
Eigenvector Analysis Il

After coordinate transformation the new problem is:

N
Given:  points ¥ =(x, y)" with »¥ =0

i=1
Wanted: direction vector ¥ which minimizes 2 d/?

Minimize
N

&= D) -3 (5] S - 757

i=1 i=1 i=1 scatter matrix

Minimization with Lagrange multiplier A:

7'SF+AF'F — min subjectto 77 =1

Minimizing r is eigenvector of S, minimum is eigenvalue of §.
For a 2D scatter matrix there exist 2 orthogonal eigenvectors:

e r,.n orthogonal to optimal straight line
*  7I.u Parallel to optimal straight line
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Straight Line Fitting by
Eigenvector Analysis Il

Computational procedure:

1
1.  Determine mean of given points: i = s u, =—
u, N

2.  Determine scatter matrix:

S=[ s, S, ]= > (x-u,) 3 (=) (3 -y
Su S Sto-u)i-m)  Si-w)
3.  Determine maximal Eigenvalue A =max{A,A)}
2
Sll+S22 (Sll-'-SZZ)
———== —|S
hap == > ) IS
4, Determine direction of eigenvector corresponding to 4,,,,
Su”x + Slzf’y = )Lmaxi”x by definition of eigenvector = ry/ry
5. Determine optimal straight line: ()L )
r max _S
(y—p,)=(x-p) 2 =(x-u) 3
rx Sl2

Exi > U,
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Example for Straight Line Fitting by
Eigenvector Analysis

A y
ST
What is the best straight-line A1
approximation of the contour? ~ i ™
//’ _F T \1

Given points: { (-50) (-30) (-1-1)(10)(32)(53)(72)(92) }

Center of gravity: m,=2 m,=1

Scatter matrix: S,;=168,8,,=5,,=38, §5,,=14
Eigenvalues: A, =176.87, 4,=5.13

Direction of straightline: r/r.=0.23

Straight line equation: y=0.23x+0.54
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Grouping by Search

What is the "best path" which could represent a
N boundary in a given field of edgels?

The problem can be formulated as a search problem:

* What is the best path from a starting point to an end point, given a cost function c(x;, x,, ...,
xXn)?

* The variablesx; ... x) are decision variables whose values determine the path.

Unfortunately, the total costc(x,, ..., xy) is in general not minimized by local

minimal cost decisions min ¢(x;), e.g. following the path of maximal edgel
strength.

Hence search fora global optimum s necessary, e.g.

* Dynamic Programming
« A*search

 Hill climbing
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Dynamic Programming |

Dynamic Programming is an optimization method which can be applied if the global cost
c(x;, X5, ..., X») obeys the principle of optimality:

If a;, a, ..., ay minimize c(x;, x,, ..., xXyn),

then a;.;, a;+y, ..., ai.; minimizec(a; ... a;, x;+;, Xt ..., Xiep, A Ay)

Hence, for a globally optimal path every subpath has to be optimal.

Example: In street traffic, an optimal path from 4 to B usually implies that all subpaths
from A to B between A4 and B are also optimal.

-
-~

A

 Dynamic Programming avoids cost computations for
all value assignments for x;, x,, ..., xy-

 Ifeachx, i =1... N, hasK possible values, only NxK? cost computations are required
instead of K.
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Dynamic Programming ||

Suppose c(Xy, Xy, ... , Xp) = (X, X5) +¢(X,, X3) + ... + c(Xy.q, Xy), thenthe
optimality principle holds.

Dynamic Programming:

Step 1: Minimize c(x;, X3) over x; > fi(x2)

Step 2: Minimize  f;(x,) + c(x, x3) over x; > f(x3)

Step 3: Minimize  f5(x3) + c¢(x3 x4) overx; > f3(x4)

[ J

Step N: Minimize  fy.;(xn) + c(xy.1, Xn) over xy =2 fy =min c(x;, X5, ..., Xy)

Example of a cost function for boundary search:

"Punish accumulated curvature and reward accumulated edge strengths"”

C(Xsens Xy ) = E (1-s(x )+« E g(x,,x,..,) S(xXy) edge strength

k=1..N k=1..N-1 Q(xkv xk+]) curvature
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Dynamic Programming lllustration

Findingthe shortest pathinagraph usingoptimal substructures:

e astraight line indicates a single edge

* awavyline indicates a shortest path between the two vertices it connects
(other nodes on these paths are not shown)

e the bold line is the overall shortest path from start to goal

—leadsto solvingthe optimization problem backwards
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Dynamic Programming llI

Example: Find optimal path from left to right
A 3D 5 G 5J

2 M
5
&R N
3

ct4  Fd 141040 VOB | 608 \ W
(costs at edges)

optimal path!

e Find best paths from A4, B, C to D, £, F,
record optimal costs atD, E, F

e Find best paths from D, E, F to G, H, I,
record optimal costs at G, H, |

etc.
e Trace back optimal path from right to left
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Intelligent Search with the A* Algorithm

Destination

vl

Start

Example:

Find the best connectionin local traffic
 eachnode is a transfer location

each transfer costs some time

 each edge represents one or more traffic lines

. each traffic line takes a certain time of travel




1. Search Step

Estimated Costs

"~,.20
“as Path
'.,.Destination
0 Path 1
mmnn -‘-“o

18 “t‘ Path 2

L
Path 3

15+20=35
6 +22=28
14 + 18 =32

Determine alternative routes to the next branching points

Determine costs for alternative routes to the next branching points

Estimate remaining costs

Determine estimated total costs
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2. Search Step

15 ..#.
*420 |
%% Path Estimated Costs
Start 1.2 ..'~. Destination
" & Path 1 15+20=35
-hli.q.lh:-'l.-'l'!‘fa 4 3
os® Path 3 14 +18 =32
18 o»*

. Path 4 6+22+12=40
Path 5 6+26+11 =43

* Followpath with least estimated total costs
 Determinealternative routestothe next branchingpoints
 Determine costs for alternative routes to the next branching points
* Estimateremainingcosts

* Determine estimated total costs
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3. Search Step

Path Estimated Costs
Path 1 15+20=35
Path 4 6+22+12=40
Path 5 6+26+11 =43
Path 6 38
Path 7 14 +6+19 =39

Carry out the same steps as in Search Step 2, here for Path 3
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4. Search Step

Path Estimated Costs
Path 4 6+22+12=40
Path 5 6+26+11=43
Path 6 38
Path 7 14+6+19=39
Path 8 15+21 =36

Carry out the same steps as in Search Step 3, here for Path 1

Path 8 is the shortest path.
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