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Grouping

Example:		Grouping noisy edge elements into a	straight edge

Essential	problem:
Obtaining globally valid	results by local decisions

Important methods:

• Fitting
• Clustering
• Hough	Transform
• Relaxation
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To make sense	of image elements,	
they first have to be grouped into larger	structures.

- locally	compatible
- globally	 incompatible
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Cognitive	Grouping
The	human	cognitive systemshows remarkable groupingcapabilities
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grouping	into	rows	or	
columns	according	to	a	
distance	criterion

grouping	into	
virtual	edges

• • •
• • •

• • •
• • •
• • •

grouping into virtual
motion

It is worthwhile wondering which
cognitive grouping rules should also	
be followed bymachine vision
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Fitting	Straight	Lines
Why do	wewant to discover straight edges or lines in	images?

– Straight	edges occur abundantly in	the
civilizedworld.

– Approximately straight edges are also	important
to model many natural phenomena,	e.g.	stems
of plants,	horizon at a	distance.

– Straightness in	scenes gives rise to straighness
in	images.

– Straightness discovery is an	example of
constancy detection which is at the heart of
grouping (and maybe even interpretation).

We will	treat several methods for fitting straight lines:
– Iterative	refinement
– Mean-square minimization
– Eigenvector analysis
– Hough	transform
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Straight	Line	Fitting	by	
Iterative	Refinement

Example:		Fitting	straight segments to a	given objectmotion trajectory
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Algorithm:
1. First straight line is P1PN

2. Is there a	straight line segment PiPk with an	intermediate	point Pj (i < j < k)
whose distance from PiPk is more than d?	If no,	 then terminate.

3.	 Segment	PiPk into PiPj and PjPk and go to (2).

Advantage:		 simple	and fast

o o o o o o o oo o o o o o o o
o o

Disadvantages: - strong	effect of outliers
- not	always optimal
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Straight	Line	Fitting	by
Eigenvector Analysis	I

• Observation:		

The	optimal	straight line passes through themean of the given points.	Why?
Let (x´y´)	be a	coordinate system with the x´ axis parallel	to the optimal	straight line.	
• optimal	straight line x´= x0´
• error Σ di

2 = Σ (xi´- x0´)2

• condition for optimum δ/δx0 {Σ (xi´- x0´)2} = -2 Σ (xi´- x0´) = 0
x0´ = 1/N Σ xi´

A	new coordinate systemmaybe chosen with the origin at the mean of the
given points:

Optimal	straight line passes through origin,	only direction is unknown.
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Given:		 (xi yi)   i = 1 ... N
Wanted: Coefficients c0 , c1 for straight line

y = c0 + c1 x which minimizes Σ di
2

d1 d2

d3 d4
d5

d6
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!x j = x j −
1
N

xi∑    ,     !yj− = yj −
1
N

yi∑



Straight	Line	Fitting	by
Eigenvector Analysis	II

After	coordinate transformation the new problem is:

Minimize

Minimization with Lagrange	multiplier λ:

Minimizing r is eigenvector of S,	minimum is eigenvalue of S.
For a	2D	scatter matrix there exist 2	orthogonal	eigenvectors:
• rmin orthogonal	 to optimal	 straight line
• rmax parallel	to optimal	straight line
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Given: points

Wanted: direction vector which minimizes Σ di
2

!vi = (xi  yi )
T    with    !vi

i=1

N

∑ = 0

!r

d 2 = di( )2 =
i=1

N

∑ !r T !vi( )
2
=
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∑ !r T !vi( ) !viT !r( ) =
i=1

N

∑  !r TS !r
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Straight	Line	Fitting	by
Eigenvector Analysis	III

Computational procedure:
1. Determine mean of given points:

2. Determine scattermatrix:

3. Determine maximal	Eigenvalue

4. Determine direction of eigenvector corresponding to λmax

5. Determine optimal	 straight line:
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S11 + S22
2
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by definition of eigenvector à ry/rx
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λmax =max{λ1,λ2}

S11rx  +  S12ry  =  λmaxrx

y−µy( ) = x −µx( )
ry
rx
= x −µx( )

λmax − S11( )
S12



Example	for	Straight	Line	Fitting	by	
Eigenvector	Analysis

Given points:	{ (-5 0) (-3 0) (-1 -1) (1 0) (3 2) (5 3) (7 2) (9 2) }
Center	of gravity:		 mx = 2 my = 1
Scatter matrix:	 S11 = 168 , S12 = S21 = 38 , S22 = 14
Eigenvalues:  λ1 = 176.87 ,  λ2 = 5.13
Direction of straight line:		 ry/rx = 0.23
Straight	line equation:	 y = 0.23 x + 0.54
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What is the best straight-line
approximation of the contour?

?

•
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Grouping	by	Search	

The	problemcan be formulated as a	search problem:
• What is the best path from a	starting point to an	end	point,	given a	cost function c(x1, x2, ... , 

xN)?	

• The	variables	x1 ... xN are decision variables	whose values determine the path.

Unfortunately,	the total	cost c(x1, ... , xN)	is in	general not	minimized by local
minimal	cost decisionsmin	c(xi),	e.g.	following the path ofmaximal	edgel
strength.

Hence search for a	global	optimum is necessary,	e.g.
• Dynamic	Programming
• A*	search
• Hill	climbing
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What is the "best path"	which could represent a	
boundary in	a	given field of edgels?
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Dynamic	Programming I
Dynamic	Programming is an	optimizationmethodwhich can be applied if the global	cost
c(x1, x2, ... , xN) obeys the principle of optimality:

Hence,	for a	globally optimal	path every subpath has to be optimal.
Example:	In	street traffic,	an	optimal		path from A toB usually implies that all		subpaths
from A‘ to B‘	between A and B are also	optimal.

• Dynamic	Programming avoids cost computations for
all	value assignments for x1, x2, ... , xN.

• If each xi, i = 1 ... N,	hasK possible values,	only N×K2 cost computations are required
instead of KN.
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If a1, a2, ... , aN minimize c(x1, x2, ... , xN),	
then ai+1, ai+1, ... , ak-1 minimize c(a1 ... ai, xi+1, xi+2, ... , xk-1, ak ... aN)
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Dynamic	Programming II
Suppose c(x1,	x2,	...	,	xN)	=	c(x1,	x2)	+	c(x2,	x3)	+	...	+	c(xN-1,	xN),	then the
optimality principle holds.
Dynamic	Programming:

Example of a	cost function for boundary search:
"Punish accumulated curvature and reward accumulated edge strengths"
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Step 1:	Minimize c(x1, x2) over x1 à f1(x2)
Step 2:	Minimize f1(x2 ) + c(x2, x3) over x2 à f2(x3)
Step 3:	Minimize f2(x3 ) + c(x3, x4) over x3 à f3(x4)
•
•
•
Step N:	Minimize fN-1(xN) + c(xN-1, xN) over xN à fN = min c(x1, x2, ... , xN)

s(xk) edge strength
q(xk, xk+1)   curvature

c(x1,..., xN ) = (1− s(xk ))
k=1...N
∑ +α q(xk, xk+1)

k=1...N−1
∑
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Dynamic	Programming	Illustration

Finding the shortest path in	a	graph usingoptimal	substructures:
• a	straight line indicates a	single edge
• a	wavy line indicates a	shortest path between the two vertices it connects

(other nodes on	these paths are not	shown)
• the bold line is the overall shortest path from start to goal

àleads to solving the optimizationproblembackwards
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Dynamic	Programming III
Example:	Find	optimal	path from left to right
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B NE H K

• Find	best paths from A, B, C  to D, E, F,
record optimal	costs atD, E, F

• Find	best paths from D, E, F to G, H, I,
record optimal	costs atG, H, I
etc.

• Trace	back	optimal	path from right to left
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optimal	path!
(costs at edges)
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Intelligent Search with the A* Algorithm

Example:
Find	the best connection in	local traffic
• each node is a	transfer location
• each transfer costs some time
• each edge represents one or more traffic lines
• each traffic line takes a	certain time	of travel
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Destination
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Start Destination

15

6

14

Path

Path	1

Path	2

Path	3

Estimated	Costs

15 + 20 = 35

6 + 22 = 28

14 + 18 = 32
18

20

22

1. Search Step

• Determine alternative	routes to the next branchingpoints
• Determine costs for alternative	routes to the next branchingpoints
• Estimate remainingcosts
• Determine estimated total	costs
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• Follow	pathwith least	estimated total	costs
• Determine alternative	routes to the next branchingpoints
• Determine costs for alternative	routes to the next branchingpoints
• Estimate remainingcosts
• Determine estimated total	costs

Start Destination

15

6

14

22

26

Path

Path 1
Path 3
Path 4

Estimated Costs

15 + 20 = 35

14 + 18 = 32

6 + 22 + 12 = 40

Path 5 6 + 26 + 11 = 43

18

20

12

11

2. Search Step
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22
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28

26

Start Destination

15

6

20

Carry	out	the same	steps as in	Search	Step 2,	here for Path	3

12

11

Path

Path	1

Path	4

Path	5

Estimated	Costs

15 + 20 = 35

6 + 22 + 12 = 40

6 + 26 + 11 = 43

Path	6 38

Path	7 14 + 6 + 19 = 39

38

6
19

3. Search Step
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14
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28

26

15

6
12

11

Path

Path	4

Path	5

Estimated	Costs

Path	8 15 + 21 = 36

6 + 22 + 12 = 40

6 + 26 + 11 = 43
Path	6 38
Path	7 14 + 6 + 19 = 39

38

20
19

4. Search Step
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14

21

Path	8	is the shortest path.

Start Destination
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Carry	out	the same	steps as in	Search	Step 3,	here for Path	1


